Kongsberg Maritime

Seatex MRU H The Versatile Heave Compensator

An ideal sensor for heave compensation of echo sounders and sonars that provides output of heave, roll and pitch measurements. By combining angular rate sensors with linear accelerometers, the MRU H achieves high accuracy heave measurements in small vessels even during extreme sea conditions. With a variety of digital and analog output signals available, interfacing the unit to various systems is easy. No expensive additional equipment is needed to operate the system.

Typical applications

The MRU H can also be used to monitor ship motions. Applications such as motion sensing on high speed vessels, voyage recording, helideck motion monitoring, as well as use with offshore crane and winch motion compensation, are ideal for the MRU H.

Function

The MRU H is specially designed for motion measurements in marine applications requiring highly accurate heave measurement in environments with extreme horizontal accelerations. The unit incorporates an orthogonal array of solid-state sensors to measure linear accelerations and angular rates. The MRU H provides complete signal processing electronics and power supply. The MRU H achieves high reliability by using sensors with no rotational or mechanical wear-out parts. The unit accepts external input of speed and heading information for improved accuracy in heave, roll and pitch during turns and acceleration.

Output variables

The MRU H outputs relative (dynamic) heave, position, velocity and acceleration in adjustable frames and, in addition, roll, pitch and yaw angles. Status of the MRU H is also available.

Digital I/O protocols

For two-way communication with the unit, a proprietary binary serial protocol is used. Output variables are transmitted as IEEE 32 bit floats (recommended) or as scaled integers. In addition, ASCII-based NMEA 0183 proprietary sentences or echo sounder formats can be selected for data variables output protocol.

Features

- High accuracy heave measurements even in dynamic environments
- Each MRU delivered with Calibration Certificate
- Negligible drift in heave after vessel turns
- Small size, light weight and low power consumption
- Outputs static and dynamic roll and pitch angles
- High output data rate (100 Hz)
- No limitation to mounting orientation
- 2-year warranty

Technical specifications

Orientation output data

Angular orientation range
Angular rate range
Resolution roll, pitch and yaw
Angular rate noise roll, pitch, yaw
Static ² accuracy roll, pitch
Dynamic ¹ accuracy roll, pitch
(for a $\pm 5^{\circ}$ amplitude)
Scale factor error

Acceleration sensors

Acceleration range Acceleration noise2 Acceleration accuracy

Heave motion output

Output range Periods Dynamic accuracy

Data output

Analog channels Digital output variables Output data rate (max) Internal update rate

Power

Power requirements

Environment

Temperature range Humidity range, electronics Max vibration (operational)

 $\pm 180^{\circ}$ 100°/s 0.001° 0.1°/s RMS 0.04° RMS 0.05° RMS 0.2% RMS

 $\pm 30 \text{ m/s}^2$ 0.0020 m/s2 RMS 0.01 m/s2 RMS

±50 m, adjustable 0 to 25 s 5 cm or 5% whichever is highest

#16 (max), RS232 or RS422 100 Hz (10 ms) 400 Hz (angular)

12 - 30V DC, 6 W

-5° to +55°C Sealed, no limit 0.5 m/s² (10-2000 Hz continuous) Max vibration (non operational) Max shock (non operational)

Other data

MTBF (computed) Housing dimensions Material Weight Connector

20 m/s² (0-2000 Hz continuous) 1000 m/s² (10 ms peak)

50000 h Ø105 x 204 mm (4.134" x 8.051") Anodized Aluminium 2.5 kg Souriau 16-26

Velocity input formats

NMEA 0183, incl. VTG, VHW, VBW or IEEE single precision floating point

Heading input formats

NMEA 0183, HDT, HDM, LR 40 interface or IEEE single precision floating point (unit in radians)

- Sounder

- Submetrix

Data output protocols

- MRU normal
- Elac Nautik (analog) - NMEA 0183 proprietary
- Atlas Fansweep 15/-20
- Digital Hippy 120
- RDI ADCP
- Simrad EM 1000 - Simrad EM 3000 - Reson Seabat

- Sonar R & D Imaging system

- 1) When the MRU is exposed to a combined two axes sinusoidal rotation over a five minutes period.
- 2) When the MRU is stationary over a 30 minutes period.

Specification subject to change without further notice

